Properties of Parametric Feedforward Neural Networks

Claudio Moraga

Department of Computer Science and Computer Engineering
University of Dortmund
Germany

moraga dcs.uni-dortmund.de

Abstract

Feedforward Neural Networks are considered to be “black boxes” in the sense that even
though theyv may solve classes of complex problems, it is not evident how these networks
solve those problems. Parametric Neural Networks are introduced and it is shown that
every classical feedforward Neural Network has an equivalent Parametric Neural Network
with the same topology. Under some scaling constraints, every Parametric Neural Network
has also an equivalent feedforward Neural Network with the same topology. Moreover,
Parametric Neural Networks support an interpretation of the work of a Network at the
level of nodes and in this sense mav be considered to be “grey boxes™. Finally it will
be shown that both classical as well as Parametric Neural Networks (using non-linear
Activations functions at «all nodes) are universal approximators.

1 INTRODUCTION

Feedforward Neural Networks with supervised learning may be associated to a non-
parametric regression system in the sense that the final values adjusted for the weights
to minimize the mean square error over a finite subset of training pairs from (R") x (R™)
or more frequently, from (R") x ([0.1]™), give no information on how a Neural Network
works or why it gives an acceptable solution to the problem. It is said in this context,
that Neural Networks are considered to be “black boxes”.

The problem mav be seen as a case of low level coding. Human beings seem to have
difficulties to understand pieces of informations if the degree of granularity chosen for its
representation alphabet is too small. {Who can, e.g., understand a piece of a program
written in machine language?). Consider the problem of searching for partial symmet-
ries in boolean functions of, say 6 variables. by inspecting their Karnaugh maps. This

861

1s a very cumbersome problem for the human observer, since binary subpatterns have
to be recognized against a “binary background”. If instead of doing it in this way the
Walsh Spectrum [Wal23] of such functions is presented on a spectral map analog to the
Karnaugh maps, the problem (for the human observer) turns out to be much simpler,
since the Walsh spectral coefficients take even values in the intervall [-64, 64] and the
distinguishability of subpatterns is highly improved. The sequential algorithms to solve
the problem, however have on the average the same complexity as in the binary case.
Interestingly enough, Neural Networks seem to have the same problem if they are used
to solve similar problems. In a very striking experiment H. Katayama and his colleagues
[KSH92], reported to have trained a Neural Network to successfully classify the first 10
digits represented as 8x8 “black and white” matrices. The Neural Network was trained
with the pixels of the matrices. The training was later repeated, except that instead
of using the original matrices, their Walsh spectra were used. The Neural Network did
again succeed in correctly classifying the digits (represented by the Walsh-transformed
matrices), but it learned much faster to do it!

The main result of the present paper is the following. If we consider the structure of
a Neural Network as a graph and associate the weights to the edges of the graph then
it is possible to transfer a part of the information coded by the weights to the nodes.
This supports a possible (partial) interpretation of the work of the nodes and improves
the speed of learning. In the next section we present a new model of feedforward Neural
Networks, which uses as activation function a parameterized sigmoid [Han96], and dis-
cuss its relationship with classical Networks. Furthermore we discuss the interpretation
supported by the new model. Finally we prove that Parametric Neural Networks (PNNs)
are universal approximators.

2 PARAMETRIC NEURAL NETWORKS MODEL

From the structural point of view, feedforward Neural Networks are directed acyclic graphs
with labelled edges. A predefined transfer function is associated to each node of the graph.
This transfer function is the result of the composition of two auxiliary functions: an input
function, which evaluates the excitation of the node, usually by computing the weighted
sum of the input signals minus a reference threshold value (i.e, the input function is an
affine function); and an output function known as activation function, that is evaluated
according to the argument computed by the input function. Classical Neural Networks
mostly use a sigmoidal activation function.

A Parametric Neural Network (PNN) [Han96] is characterized by elementary processors
at the nodes having a parameterized sigmoidal activation function given by:

f(x) =[er/(1 + exp(—ca(w = ca))] — e,

where @ € R, represents the weighted summation of the input signals of the processor
under consideration including a possible bias, and the new parameters have the following

862

meaning:

c1. gain (attenuation)

c2. slope at the inflection point of the sigmoid, which is inverse
proportional to the range of (approximate) linearity of the
elementary processor

c3. bias. which modifies the degree of svmmetry of the transfer
function

cy. delayv of the argument.

It has been shown [Mor97] that every PNN has an equivalent classical Backpropagation
Neural Network with the same topology, where the new parameters ¢; and ¢, may be ex-
pressed as scaling factors affecting it several weights at the same time. From a local point
of view. parameter ¢z may be given the value (¢;/2) and changes the activation function
from sigmoid into tanh. Moreover the value of all parameter ¢z of one layer affect the
thresholds of the succeeding layer. Finallv, parameter ¢y allows interpreting the threshold
of a node as a delay in applying the corresponding input signal. It is fairly obvious, that
every calssical Neural Network has an equivalent PNN with the same topology and the
following parameters: ¢ = 1, ¢ = 1, ¢ = 0 and ¢4 = 0. Backpropagation Neural
Network considered to be ~black boxes™. in the sense that they may solve a problem by
converging to an appropriate set of weights. however from the values of the weights it is
not simple to infer how the network solves the problem. PNNs might well be considered
“orey boxes . since some more information becomes availabe at the node level partially
illustrating how the elementary processors work. A gain factor, a linearity factor and a
svimmetry factor become explicit; even the own threshold at every processor, which under
the Backpropagation algorithm [RH\WS6] only receives a numerical adjustment, mayv be
Interpreted as a measure of the delay of reaction of the corresponding processor.

The new parameters of a PNN add degrees of freedom (and help to better understand
the work of the elementary processors): but they must be adjusted additionally to the
weights. VWhich is the resulting overhead?

Hvbrid training methods have been proposed by Han [Han96], [HMS96], by using a Ge-
netic Algorithm to obtain a layerwise preliminary adjustment of the new parameters
followed by a gradient descent algorithm to tune the parameters and adjust the weights.
A full integration of adjustment of the new parameters together with the weights within
R-Prop [RiB94] has been successfully done by Bui [Bui96]. Inspite of having more para-
meters to adjust. PNNs come faster than classical Neural Networks to levels of acceptable
minimal errors and reach better minimal mean square errors [Han96], [Bui96], [HMS96].
Both the fact that adjusting the ¢; and ¢, parameters is equivalent to simultaneously
adjusting several weights of the Network -(what is not possible with the Backpropaga-
tion Algorithm)- and the fact that by increasing the dimensionality of the error-space]
the former local minima may disappear or become weaker attractors, support a plaw.wib](“l
explanation for the better performance of PNNs.

863

3 PARAMETRIC NEURAL NETWORKS ARE UNI-
VERSAL APPROXIMATORS

3.1 Notation and Background

Any (Borel) measurable function f: R — [0,1] that is increasing and satisfies the follow-
ing boundary conditions: lim,_..f(z) =1 and lim,—_ f(z) = 0 is called a squashing
function. Notice that squashing functions are not necessarily continuous, but only meas-
urable. Let I" denote the set of all squashing functions.

Let A" ={A: R" — R|A an affine function} and let K be a compact subset of R"

A network that realizes the function

” q
Z(G)(I) = Z}/}I-G(Ai(;lf)), re KCR, A;e A", b€ R,

=1
g€ N,GeTl

will be called a S"%(G)-network.

A feedforward network that realizes the function

q Py

SIG)e) = 36 TI GlAn(e), o€ K C R, Ay € A",
k=1

i=1
Bi€R, €N, p; €N

where (7 is a nonconstant continuous function, will be called Y I1"(G)-network.

Theorem 1 [HSWS89]: For every squashing function W, every r, and every probability
measure g on (A, B"), >"(V¥) is uniformly dense on compacta in C" and p,-dense in M.
(B" denotes the Borel o-field of R", C" denotes the set of continuous functions and M",
the set of all Borel measurable functions from K to R.)

Theorem 2 [HSW89]: For every continuous nonconstant function G maping R to R,
every r, and every probability measure u on (R",B"), >_T1"(&) is uniformly dense on
compacta in € and p,-dense in M".

Corollary 2.1 [HSW89]: For every continuous squashing function ¥, every r, and every
probability measure measure p on (R, B"), > TI"(¥) is uniformly dense on compacta in

864

C" and p,-dense in M".

IFrom Theorem 1 and Corollary 2.1 follows that both)-"(G)-networks. j.e. feedforward
networks with one hidden layver (with squashing activation functions) and 3°117(G)-
networks (using continuous squashing functions) can approximate any continuous func-
tion uniformly on any compact set and any measurable function arbitrarily well in the
corresponding metric, regardless of the squashing or continuous squashing functions, re-
spectively, regardless of the dimension of the input data and of the probability measure ;.
Both Y7 (G)-networks and > [1"1)-networks are universal approximators (in the sense
explained above).

3.2 New Results

PNNs as well as classical Backpropagation Neural Networks use all over sigmoid functions
(which are continuous squashing functions) and are not restricted to have a single hidden
layer. In what follows, the universal approximation capability of these Neural Networks
will be proven.

Theorem 3: A Backpropagation Neural Network with one hidden layer using squashing
functions and one output node with a continuous, invertible squashing function as activa-
tion function is a universal approximator for any continuous function f : K — [0, 1].
For anv ¢ > 0 if the approximating Neural Network realizes ¢ : K — [0,1], then
supge (1F(2) = le)]) < <.

Proof: Let S € I' be a continuous invertible squashing function and for all z € K let

O(r) = (5o f)(z)
It becomes apparent that ® is a continuous function with the same domain as f. Accord-
ing to Theorem 1. there exists a >."(G)-network that can approximate ® uniformly.

Adding in cascade a new output processor realizing S(A(y)), 4 € AF, y € Rand k € V.
the resulting network produces
pla) = (So®j(x) = (So(S7 o f))(z) = flz)

Finally. the activity of the original linear output processor may be realized by the affine
function at the input of the new S-processor (see Figure 1). The assertion follows.

|
The author gladly acknowledges that this proof was suggested to him by Dr. Juan Luis|
Castro. ETS Ingenierfa Informatica. Departamento de Ciencias de Computacién e Inteli-
gencia Artificial, Universidad de Granada, Spain.

oo
(@)
wh

It becomes apparent, that if f : ' — [0, 1] is a measurable function, the same proof-
strategy may be used.

Theorem 4: A Backpropagation Neural Network with one or more hidden layers using
continuous squashing functions and one output node with a continuous, invertible squash-
ing function as activation function is a universal approximator for any continuous function
[+ K —[0,1]. For any € > 0 if the approximating Neural Network realizes ¢ : K — [0, 1],
then sup (| f(z) —p(2)]) < e.

Proof: Let f,® and 5 be defined as in Theorem 3. According to Corollary 2.1 there
exists a)" []"(G)-network with continuous squashing functions at the first hidden layer,
that approximates ® uniformly. According to Theorem 1, every [[-processor may be
realized arbitrarily well with a .¥(G)-network, where k is given by the number of inputs
of the corresponding []-processor and (is a continuous squashing function. (Obviously
G € 1), (see Figure 2, left and center). Connecting an S-processor in cascade, a new
network is obtained (Figure 2, center) that computes:

o(2) = (S0 ®)(x) = (S0 (57 0 f))(x) = f(a).

Because of the associativity of the addition all linear processors in the last and second last
hidden layers may be combined into just one and the task of this resulting processor may
be realized by the affine function at the input of the S-processor, as discussed in Theorem
3 (see Figure 2, right). This concludes the proof for networks with two hidden layers. It
is simple to see that since in the former process of replacement of the []-processors by
a »."(G)-networks the & functions were selected to be continuous squashing functions,
then every G-processor in the last hidden layer may be realized by an appropriate [T"(G)-
network and the new [[-processors may be realized by a >_"(G)-network, where G would
be selected to be a continuous squashing function. As discussed above, the remaining
linear processor may be absorbed by the output processor. This replacement strategy
allows the generation of equivalent Neural Networks with increasing number of hidden
layers. Since from Theorems 1 and 2 }"(G) and []"(G)-networks can approximate their
goal continuous functions with a given arbitrary accuracy it will always be possible to
make all required replacements and still satisfy the overall accuracy requirements for the
approximation. The assertion follows.

It becomes apparent, that if f : K — [0,1] is a measurable function, the same proof-
strategy may be used.

Both Theorem 3 and Theorem 4 also apply to PNNs if the ¢; = 1 and ¢3 = 0 at the
output processor, since then the resulting sigmoid is a continuous, invertible squashing
function and for every Backpropagation feedforward network there exists an equivalent
PNN with the same structure.

Theorem 5: A PNN with one or more hidden layers (using a parameterized sigmoid at

866

every processor) is a universal approximator for any continuous function f : K — [—a, b].

Proof: Define g : I — [0, 1] such that for all z € A’

gla) = [f(2)+a]/(a+b).
Obviously f(z) = (a+b)g(x)—a forall z € K.

After Theorems 3 and 4 there exists a PNN using parameterized sigmoids, with ¢; = 1 and
c3 = 0 at the output processor that approximates arbitrarily well g(z). Since to obtain
f(x) scaling and shifting is necessary, this may be easily obtained by using ¢; = (a + b)
and ¢3 = a at the output processor of the PNN. This concludes the proof.

A detailled analysis of tolerances may be found in [Mor97].

867

398

Figure 1. Net-transformations related to Theorem 3

References

(Bui96]

[Han96]

[HMS96]

[HSWS9]

[KSH92]

[Mor97]

[RHWS6]

[RiB93]

[RuMS86]

[Wal23]

870

Bui T.B.: Vergleichsanalyse zweier Optimierungsstrategien fir vorwarts-
gerichtete Netze. Diplomarbeit, FB Informatik, Universitat Dortmund, (1996)

Han J.: Optimization of Feedforward Neural Networks. Dissertation, FB In-
formatik, Universitat Dortmund, (1997)

Han J., Moraga C., Sinne S. : Optimization of Feedforward Neural Networks.
Engineering Applications of Artificial Intelligence 9 (2), 109-119, (1996)

Hornik K., Stinchcomb M., White H.: Multilayer Feedforward Networks are
Universal Approximators. Neural Networks 2, 359-366, (1989)

Katayama H., Shimomura T., Harada H., Konishi R.: The learning of a Neural
Network using the Hadamard Transform. Proc. 2nd. International Conf. on |
Fuzzy Logic and Neural Networks, 1049-1052, lizuka, Japan, (1992)

Moraga C.: A grey model for Parametric Feedforward Neural Networks.
Forschungsbericht 644, Fachbereich Informatik, Universitdt Dortmund, (1997)

Rumelhart D.E., Hinton G.E., Williams R.J.: Learning Representations by
back-propagating error. Nature 323, 533-536, (1986)

Riedmiller M.H.., Braun H.: A direct adaptive method for faster backpropaga-
tion learning: The Rprop algorithm. Proc. IEEE Int. Conf. on Neural Networks
(ICCN), 586-591, (1993)

Rumelhart D.E., McClelland J.L. (Eds.): Parallel Distributed Processing. MIT
Press, Cambridge MA, (1986)

Walsh J.L.: A closed set of orthogonal functions. American Journal of Math.
45, b-24, (1923)

