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Abstract 

Feedfon\·arcl Neura.l J\fetworks are consiclered to be "black in the sense that even 
though they may solve classes of complex problems, it is not evident how these networks 
solYe those problems. Parametric ~eural :\~etworks are introduced and it is shown that 
every classical feeclforwa.rcl Neural ~et\\·ork has an equivalent Parametric Neural Network 
with the .same topology. Vncler some :::caling constraints, every Parametric Neural Network 
has also an equiYalent feeclforwarcl ~eural :'\etwork with the same topology. Moreover, 
Parametric Neural ::\eh,vorks support an interpretation of the work of a J'\etwork at the 
leYel of nocles ancl in this sense ma~ be considered to be "grey boxes'·. Finally it will 
be shmn1 that both classical as \\·ell as Parametric Neural Net-works (using non-linear 
Activations functions at al! nocle.s) are uniYersal approximators. 

1 INTRODUCTION 

Feeclfon':arcl Neural Networks with superYised learning may be associated to a non
parametric regression system in the ,:;ense that the final values acljusted for the weights 
to mini miz e the mean square error m·er a finite subset of training pairs from ( Rn) x (Rm) 
or n1ore frequently, from ( ) x ([0.1] ), gi-:e no information on how a 1\eural Network 
works or why it giYes an acceptable solution to the problem. It is said in this context, 
that I\eural Net\Yorks are considerecl to be "black boxes". 

The problem n1a1· be seen as a case of low level coding. Human beings seem to 
difficulties to unclerstancl pieces of informations if the degree of granularity chosen for lts 
representation alphabet is too small. 1\Vho can, eog., understand a piece 
written in machine la.nguage?). Consicler the problem of searching for 
ríes in boolean functions of, say 6 '· ariables. by ínspecting their Karnaugh 



is a very cumbersomc problcn1 for the human smce subpatterns have 
to be recognizccl against a "binary If insteacl of cloing it in this way 
VValsh Spectrum [\'Val23] of such functíons is presented on a spectral map analog to the 
Karnaugh maps, the problem (for the human turns out to be much simpler, 
since the \!Valsh spectral coefficients take even va.lues in the intervall [-64, 64] and the 
distinguishability of subpa.tterns is highly improved. The sequential algorithms to solve 
the problern, however have on the average the same complexity as in the binary case. 
Interestingly enough, N e mal N etworks seem to ha ve the same problem if they are usecl 
to solve similar problems. In a very striking experiment Katayama and his colleagues 
[KSH92], reported to have trained a Neural Network to successfully cla.ssify the first 10 
digits representecl as ''black ancl white" matrices. The Neural Network was train 
with thc pixels of the n1atrices. The training was later repeatecl, that 
of using the original matrices, their alsh spectra were usecl. The N 

succeecl in correctlv the the V\7 alsh-
matrices), bnt it learned mnch faster to do it! 

The mam result of the present paper is the following. If we structure of 
a Neura.l Network a~ a grapl1 émcl associate the 
it is possiblc to transJcr a part of the information 
This supports a po~.sihk (partial) interpretation 
the speed of lea.rning. ln the next section vve 

. whiclt U:)CS a.s ad i v;ü ion function a 
cuss its relationsl1ip with clas~;ic 
supported by the new moclel. Finally \Ve provc 
are u ni versal ap p roximat ors. 

2 PARAI\/IETRIC T\TEUR~AL 

to the 
the 

RK EL 

From the stn1ct ural poillt of ~view, feedforward N eural N etworks are directed acyclic graphs 
with labellecl edgcs. A preclcfinecl transfer function is associatecl to each nocle of the graph. 
This transfer function is the result of the composition of tvvo auxiliary fnnctions: an input 
function, whicb evaluatcs the exciiaiion ofthe node, usually by computing the weighted 
smn of the input signaJs n1inus a reference threshold value (i.e, the input function is an 
a.Jfine function); ancl an output fnnction known as activa.tion function, that is evaluated 
according to the argument computed by the input function. Classical N eural N etworks 
mostly use a sigmoidal activation function. 

A Parameüic Nenral T\et\vork (PNN) [Han96] is characterized by elementary processors 
at tbe no des havi ng a pcl rameterizecl sigmoidal activation function given 

f(;c) = [cl/(1 + 

where J: E represents the weightecl summation of the input signals of the processor 
nnder consicleration inducling a possible bias, and the new parameters have the following 
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1neamng: 

c1 . gain (attenuation) 
c2. slope a t the infiection point of the sigmoid, which is in verse 

proportional to the range of ( approximate) linearity of the 
elen1entary processor 

C:3. bias. \Yhich moclifies the clegree of symmetry of the transfer 
function 

c4 . ele la y of the a.rgument. 

It has been shown [l\Ior97] that every PXN has an equivalent classical Backpropagation 
:'\ eural N et\York IYith the same topology, where the new parameters e1 and e2 may be ex
pressecl as scaling factors a.:ffecting it sel'eral weights a.t the same time. From a local point 
of Yiew. parameter e3 ma.y be given the Yalue ( ei/2) and changes the activation function 
from sigmoicl into tanh. Moreover the Ya1ue of all parameter e3 of one layer affect the 
thresholcls of the succeeding layer. Finally, parameter e4 allows interpreting the threshold 
of a node as a clela::.,r in applying the corresponcling input signal. It is fairly obvious, that 
eYery calssical Neural 1\etwork has an eqtü,-alent PNI\ with the same topology and the 
following parameters: c1 = 1, c2 = 1, e3 = O and c1 = O. Backpropagation Neural 
:\etwork consiclerecl to be .. black boxes". in the sense that they may solve a problem by 
conYerging to an appropriate set of weights. however from the values of the weights it is 
not simple to infer lww the network soh·es the problem. P::.JNs might well be consiclered 
.. grey boxes .. , since sorne more inforrnation becomes aYailabe a.t the node level partially 
ill ustra ting how t he element ary processors work. A gain factor, a lineari ty factor and a 
symrnetry factor become explicit; even the own threshold at every processor, which uncler 
the Backpropagation a1gorithm [RHW86] only receives a numerical adjustment, may be 
interpretecl as a measure of the delay of reaction of the corresponding processor. 

The lle\Y parameters of a P::\N add clegrees of freedom ( and help to better understand 
the work of the elementar~· processors): but they must be adjusted additionally to the 
\\-eights. \Yhich is the resulting overhead? 

H:-brid training methocls haYe been proposed by Han [Han96], [HMS96], by using a Ge
netic Algorithm to obtain a layerwise preliminary adjustment of the new parameters 
follo1•ved by a gradient clescent algorithm to tune the parameters and adjust the weights. 
A full integration of acljustment of the new parameters together with the weights 1Yithin 
R- Prop [RiB9J] has been successfully clone by Bui [Bui96]. Inspite of having more para
meters to adjust. Pl\Ns come faster than classical Neural :'\etworks to levels of acceptable 
minimal errors ancl reach better n1inimal mean square errors [Han96], [Bui96], [Hl\I S96]. 
Both the fact that adjusting the e1 and e2 parameters is equivalent to simultaneously · 
adjusting several weights of the Network -(what is not possible with the Backpropaga-

1 

tion Algorithm)- ancl the fact that by increasing the dimensionality of the error-spa.ce 1 

the former local mínima may clisappear or become weaker attractors, support a plausible 
explanation for the better performance of PN::-Js. 
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3 P ARAIVIETRIC NEURAL NETWORI(S ARE UNI~ 
VERSAL PAPPROXIMATORS 

3ol Notation and Background 

Any (Borel) measurable function f : R ----+ [0, 1] that is íncreasing and satisfies the follow
ing boundary conclitions: lima·~cxJ( x) = 1 and limx-+-cof( x) = O is called a squashing 
function. Notice that squashing functions are not necessarily continuous, but only meas
urable. Let r denote the set of all squashing functions. 

Let A' = {A : R'' ----+ Rl an affine function} and let K be a compact subset of R' 

A network that realizes the function 

r q 

:[(G)(:r:) = :[ d,G( (x)), x E e R', Ai E A', Pi E 
i=l 

q E N,G E f 

will be called a ¿k ( G)-Hetwork. 

A feedforwarcl network that realizes the function 

·r r¡ Pj 

I:il(G)(:r) = Lf3.i II G(Ajk(:r)), X E J{ e R', Ajk E A', 
i=l k=l 

E R, q E N, P.i E N 

where G is a nonconstant contínuous function, will be called ¿ rr ( G)-network. 

Theorern 1 [HS\;\/89]: For every squa.shing function W, every r, and every proba.bility 
measure pon(!\. B~'), ¿r(w) is uniformly dense on compacta in C' and pp-dense in M. 
( B'. denotes the Borel a--fiel el of R,., C:'" denotes the set of continuous functions and M', 
the set of all Borel measurahle functions from K to R.) 

Theorem 2 [HS\1\189]: For every continuous nonconstant function G ma.ping R to 
every r, a.nd every proba.bilit.Y mea.sure pon (R',B'), 'LIY(G) is uniformly dense on 
compacta in a.ncl p,,-dense in AJ'r. 

.1 : For every continuous squashing function 1Jf, every 1, and every 
proba.bilit.v rneasure measure p on ( , B'), I: (\IJ) is uniformly dense on compacta in 
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From Theorem l ancl CorollarY ~ .1 folbws that both -z=r ( G)-net , 
networks with one hiel den la~·er ( with squashing activation functions) lT ( 
networks (using continuous squashing functions) can approximate an~· contirmous 
tion uniformly 011 any compact set and any measurable function arbitrarily 
corresponding metric, regardless of the squashing or continuous 
spectiwly, regarclless of t he climension of the input data and of the probability measure fi 
Both "L'" ( )-nctworks ancl L rr' G )-nebYorks are universal approximators (in the SCDSe 

explained abo ve). 

3 .. 2 1\T ew Results 

s as vvell as classical Backpropagation 
( wlnch are continuous squashing functions) are not 

vvhat follows, the uniYersal approximation capability 
be proven. 

Theo:rem 3: A Backpropagation :-\,"eural ~Tetwork with one hidden 
functions ancl one output nocle 1\·ith a 
tion function is a universal approximator for any 

any é > O if the appro:\:imating I\Teural 
S U p ¡,· ( 1 f (X) - y ( :2: ) 1 ) < e. 

Proof: Let S E r be a continuous invertible squashing function and for all X E 

<!l(.r) = (S- 1 o f) 

It becomes apparent that w is a continuous function with the sarne clomain as f 
ing to Theorem~ L there e:\:i.sts a I::r ( G)-network that can approximate W 

Aclding in ca.scacle a ne1\· output processor realizing S'(A(y)), 
the resulting nctwork produces 

E 

v(:r:) = 1 S o <P J(.r) =(S o (S-1 o f))(x) = f(.r) 

finally. the of tbe original linear output processor may be 

' y E 

function at the input of tl1P new .~'-processor ( see Figure l). The assertwn 

The author glaclly acknmYledges that this proof was suggested 
ro. IngenierÍa Inforn1ática. Departamento de de 

gencia i\rtificiaL Universidad ele Granada, Spain. 

k: E 

1 
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lt becomes apparent, that if f 
strategy may be used. 

----+ [O, 1] is a measurable function, the same proof-

Theorem 4: A Backpropagation Neural Network wíth one or more hidden layers using 
continumts squashing functíons and one output node with a continuous, invertible squash
ing function as actívation function is a universal approximator for any continuous function 
f : K ----+ [O, 1]. For any s > O if t he approximating N eural N etwork realizes lf! : J( ----+ [O, 1], 
then supK(if(::r)- y>(;l·)i) <E. 

Proof: Let f, <P and S be defined as in Theorem 3. According to Corollary 2.1 there 
exists a :L fY(G)-network wíth continuous squashing functions at the first !ayer, 
that approximates <P uniformly. According to Theorem 1, every f}processor may be 
rea.lized arbitrarily well wíth a :Lk:(G)-network, where k is given by the number of inputs 
of the corresponcling f} processor ancl G is a continuous squashing function. (O bviously 

E f), (see Figure left and center). Connecting an S-processor in cascade, a new 
network is obtained (Figure 2, center) tha.t computes: 

y>(:.r) =(S o <P)(:c) =(S o (S- 1 o f))(x) = fCc). 

Because of the associativity of the addition alllinear processors in the last and second last 
hidden layers may be combined into just one and the task of this resulting processor may 
be rea.lized by the affine function at the input of the S-processor, as discussed in Theorem 
3 (see Figure 2, right). This con eludes the proof for networks with two hiel den layers, It 
is simple to see tha.t since in the former process of replacement of the I1-processors by 
a :L" ( G)-networks the G functions were selected to be continuous squashing functíons, 
then every G-proccssor in the last hidden layer ma.y be realized by a.n appropriate nr ( G)
network and the new fl-processors may realized by a ¿:r ( G)-network, where would 
be selected to be a continuous squashing function, discussed above, the remaining 
linear processor ma)' be absorbed by the output processor. This replacement strategy 
allovvs the generation of equivalent Neural Networks with increasing number of hidden 
layers. Since frorn Theorcms 1 and 2 :L'. ( G) and ( G)-networks can approximate 
goal continuous functions vvith a given arbitrary accuracy it will 
rnake all required and still satisfy the overall accuracy requirements 
ap proximation. The a.ssertion follows. 

It becomes appa.rent, that if f 
strategy n1ay be used. 

----+ [0, 1] 1s a measurable function, the same proof-

Both Theorem :3 and Theorem 4 also apply to PNl\T s if the c1 = 1 and c 3 = O at the 
output processor, since then the resulting sigmoid is a continuous, invertible squashing 
function ancl for every Backpropagation feedforward network there exists an equivalent 
PNN with the same structure. 

Theoren'l 5: A PNN with one or more hidden layers ( using a parameterized sigmoid at 
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every processor) is a uniYersal any continuous function f : 

Proof: Define g : 1\ -r [O, 1] such that for all x E J{ 

g(x) 

Qb,·ioush· f(x) 

[f(:r) + o]/(a + b). 

(a+ b)g(x)- a for all x E 

-r [-a, b]. 

After Theorems :3 ancl ~1 there cxists a PNN using parameterized sigmoids, with c1 = 1 and 
c3 = O at the output processor that approximates a.rbitrarily well g(x). Since to obtain 
f(x) scaling ancl shifting is necessary, this may be easily obtained using c1 = (a+ b) 
and c3 = o at t he output processor of the PNN. This condueles the proof. 

A detai1lecl analysis of tolerances may be found in [:Vi'or97]. 
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Figure 1. Net-transformations related to Theorem 3 
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